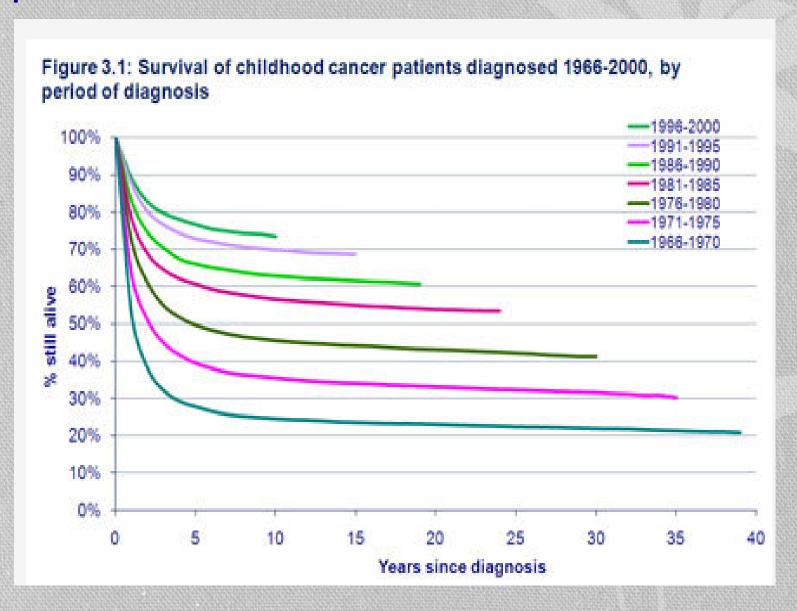


Fertility preservation in the (young) cancer patient

Professor W Hamish B Wallace University of Edinburgh & Royal Hospital for Sick Children, Edinburgh, Scotland, UK


hamish.wallace@nhs.net

ESMO Madrid 27 September 2014

No Conflicts of Interest to Declare

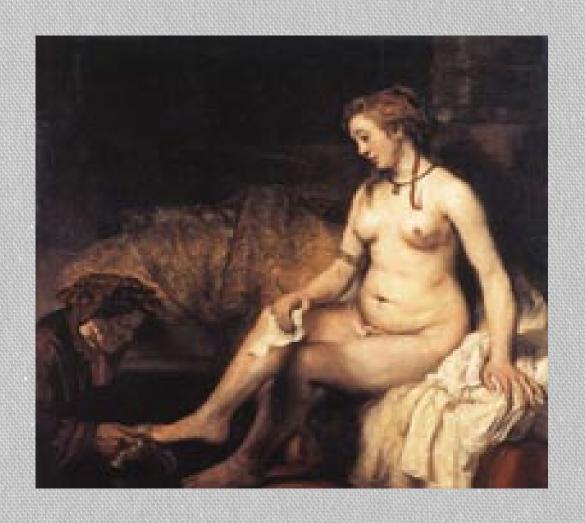
Improved Five Year Survival (1966-2000)

Risk assessment for fertility preservation

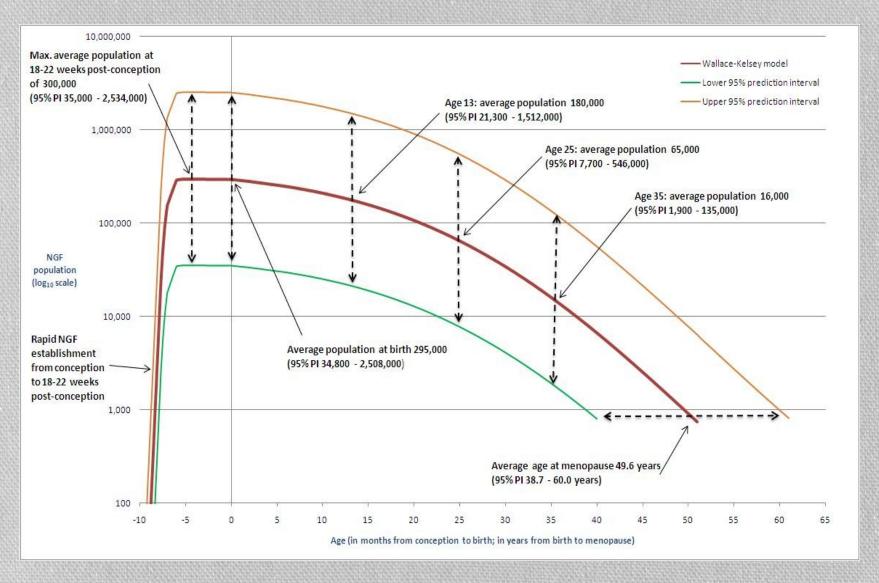
ntrinsic factors

- Health status of patient
- Consent (patient/parent)
- Age
- Assessment of ovarian reserve

xtrinsic factors

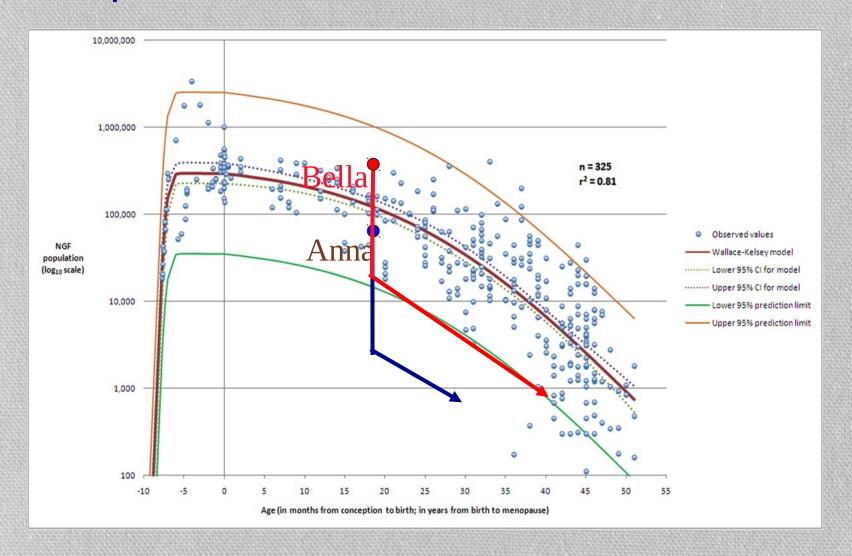

- Nature of predicted treatment
 - (high/medium/low/uncertain risk)
- Expertise/options available

Risk of infertility

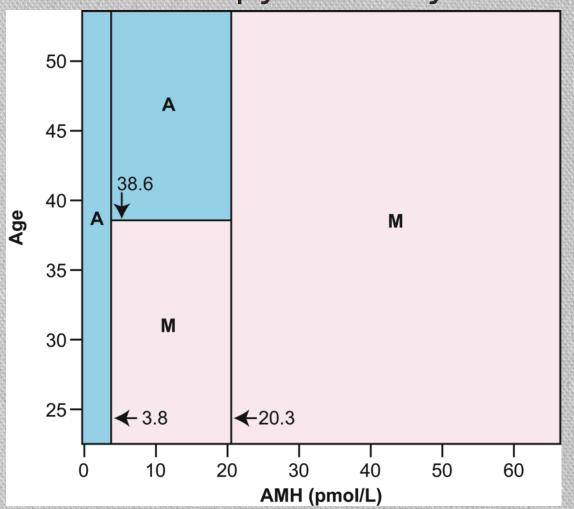

Low risk (<20%) Medium risk High risk ALL AML Wilms' tumour Osteosarcoma Brain tumour Ewing's sarcoma Sx, RT < **24Gy** STS: stage II/III Soft tissue Neuroblastoma sarcoma NHL (stage1) Brain tumour Hodgkin's RT>24Gy Lymphoma HLydhigh Stage Lancet Oncology, 2005 **HL(Low stage)**

(>80%)**Total Body** Irradiation Pelvic/testes RT Chemo pre BMT Metastatic Ewing's **HL (Pelvic RT)**

Young females with cancer



Menopause



Wallace & Kelsey (2010) PloS

Ovarian reserve: Conception to Menopause

Pretreatment anti-Müllerian hormone predicts for loss of ovarian function after chemotherapy for early breast cancer.

sensitivity 98.2% specificity 80.0% for correct classification of amenorrhoea

n=75

Key features of the 3 options for fertility preservation for women

Technique	Main advantages	Main disadvantages
Embryo cryopreservation	Established technique	May incur delay
		Sperm required: partner or donor
		Fixed potential for future fertility
Oocyte cryopreservation	Does not require sperm	May incur delay
		Not appropriate for pre-pubertal child
		Limited numbers of eggs can be stored in
		time available
Ovarian tissue	Minimal delay	Requires surgical procedure
cryopreservation	No lower age limit	Malignant contamination in some conditions
	Allows for spontaneous and	precludes reimplantation
	repeated conception	In vitro follicle growth unlikely to be
	Greater allowance for future	available for several years.
	developments	

Ovarian tissue cryopreservation: Worldwide experience

- * At least 30 pregnancies worldwide after othotopic reimplantation of frozenthawed ovarian cortex
- * Success rate is unclear as the denominator is unknown
- * No pregnancies reported following the reimplantation of ovarian tissue harvested prepubertally
- * Young children are potentially ideal candidates

Fertility Preservation ASCO Guidelines (2006) and update (2013)

o develop guidance to practicing oncologists about available fertility preservation methods and related issues in people treated for cancer

xpert Panel

he questions to be addressed by the guideline were determined by the Panel

ystematic review of the available literature

Lee et al. JCO 2006 Loren et al. JCO 2013 •1

۰F

•1

·C

Fertility Preservation ASCO Guidelines (2006) and update (2013): General

Discuss

fertility preservation with **all** patients of reproductive age (and with parents or guardians of children and adolescents) if infertility is a potential risk of therapy

•Refer

patients who express an interest in fertility preservation to reproductive specialists

•Address

fertility preservation as early as possible, before treatment starts

Document

fertility preservation discussions in the medical record

Encourage

patients to participate in registries and clinical studies

Lee et al. JCO 2006 Loren et al. JCO 2013

Fertility Preservation ASCO Guidelines update (2013) (Females)

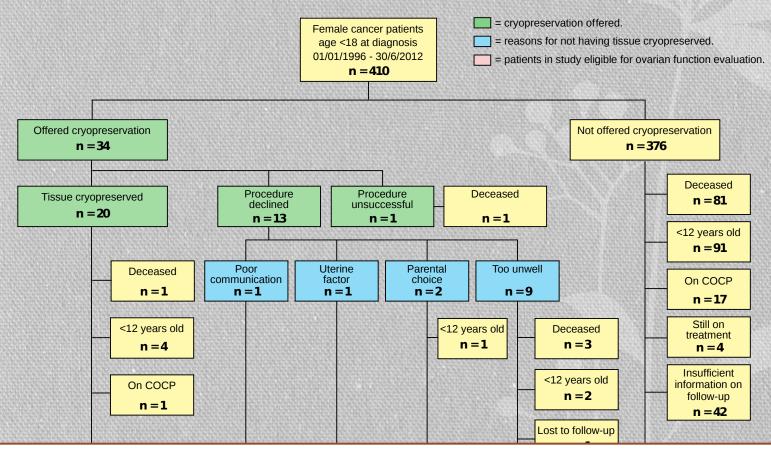
mbryo (2006) and oocyte cryopreservation (2013) should be considered as **established** fertility preservation methods

here is insufficient evidence of the effectiveness of ovarian suppression (gonadotropin-releasing hormone analogs) as a fertility preservation method

ther methods (e.g., ovarian Lee et al. JCO 2006 ther methods (e.g., ovarian Lissue cryopreservation) are still experimental

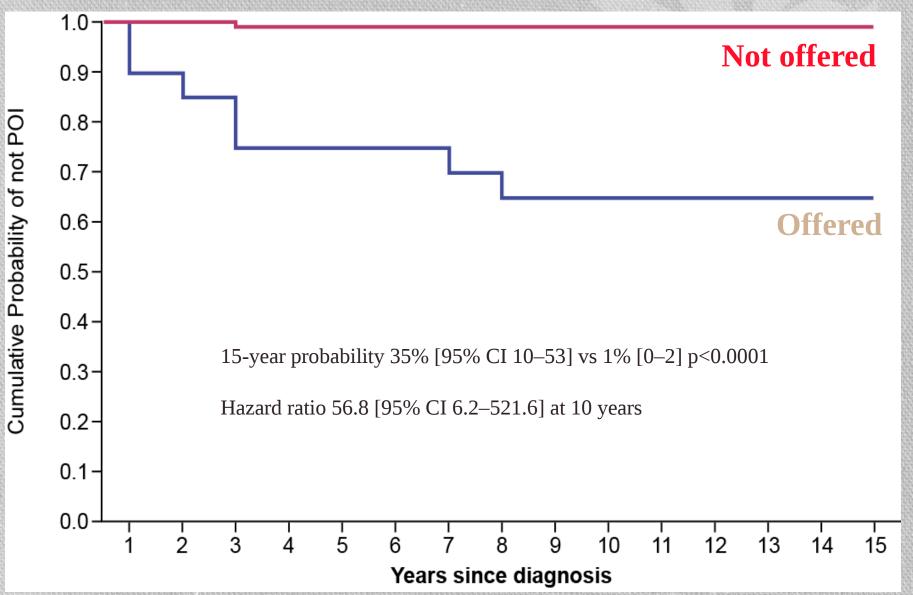
Ovarian cryopreservation & ovarian function

Edinburgh experience in children (< 18 yrs) 1996-2012


fertility preservation in children and adolescents?

Development of 'Edinburgh criteria' since 1996

- •Age <35 years
- No previous chemotherapy (or low risk)
- •High (>50%) risk of ovarian failure
 - High dose alkylating agents
 - Radiotherapy to pelvis
- •Good (>50%) chance of survival


Can this predict those at high risk of POI?

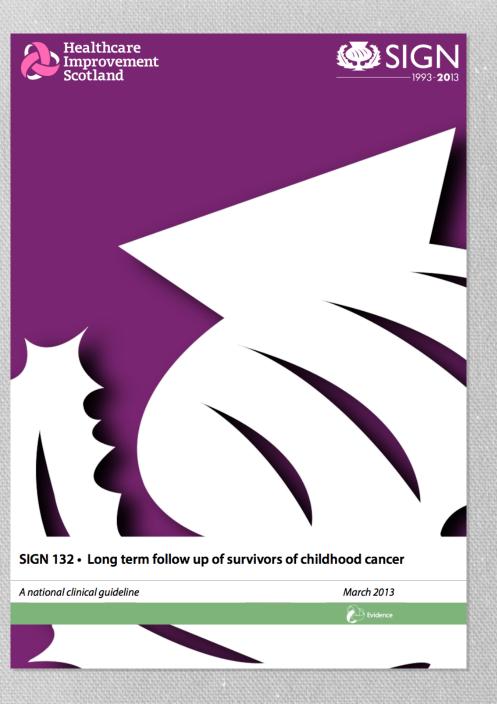
15 year, population-based analysis of criteria for ovarian cryopreservation

Do the 'Offered' group have a higher prevalence of POI?

Cumulative incidence of POI

Conclusion

•N

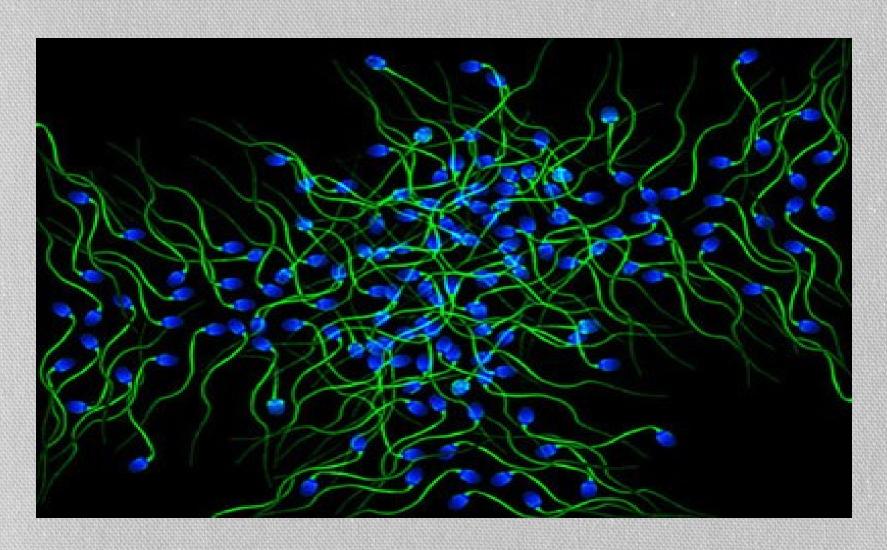

varian cryopreservation was offered to 9% of our patients, and performed in 5%

he procedure was safe and without complications

o patients have asked for re-implantation of their tissue - to date

Il patients who have thus far developed premature ovarian insufficiency were identified except one patient

he Edinburgh Selection Criteria have proved to be helpful in selecting those patients at highest risk of POI


Fertility:

Good links are required between paediatric oncology units and fertility services

Consider ovarian tissue cryopreservation (within the context of a clinical trial) in girls at high risk of premature ovarian insufficiency (D)

Wallace WH, Thompson L, Anderson RA Long term follow-up of survivors of childhood cancer: summary of updated SIGN guidance. *BMJ* 2013; **346**: f1190.

Isolated human sperm cells (1500x) Albert Tousson - Nikon Small world

Males: Fertility preservation

oung men who can produce semen should have the opportunity of sperm banking before treatment begins

perm retrieval should be considered if the chances of infertility are high and the testes are >10mls

- Storage of gametes is governed by the HFE act 1990
- Written informed consent from a competent male is required

here is currently no option to preserve fertility in the pre-pubertal boy

•Y

.5

•Т

Fertility Preservation ASCO Guidelines update (2013) (Males)

Prese

nt sperm cryopreservation (sperm banking) as the only established fertility preservation method

·Do

not recommend hormonal therapy in men; it is not successful in preserving fertility

•Infor

m patients that other methods (eg, testicular tissue cryopreservation) are experimental

Advis

e men of a potentially higher risk of genetic damage in sperm collected after initiation of chemotherapy

Lee et al. JCO 2006 Loren et al. JCO 2013

cknowledgements

ichard Anderson

avid T Baird

om Kelsey

velyn Telfer

arie McLaughlan

lice Grove Smith

eorge Galea

od Mitchell

ouise Bath

hris Kelnar

ngela Edgar

ark Brougham

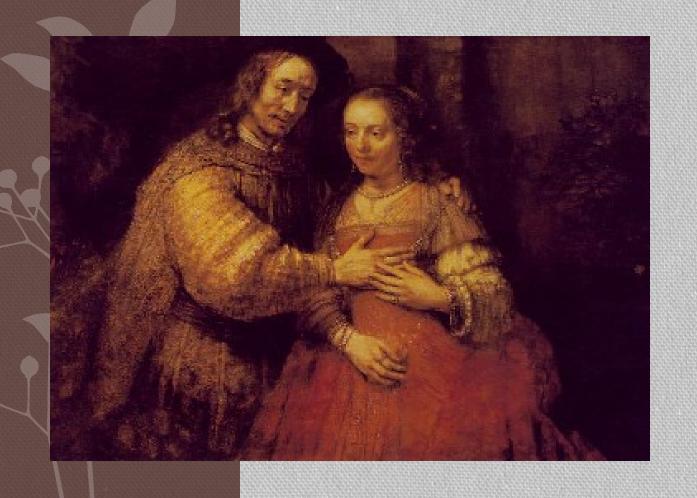
raser Munro

·R

•D

∙T

Æ


•M

•A

•G

Thank You

Ovarian cortical strips

ich in primordial follicles

urvive cryopreservation

echnique validated in sheep

Baird DT et al., Endocrinology (1999)

Live births following cryopreservation of ovarian tissue and transplantation

Diagnosis	Age (yrs)	Surgical method	Reimplantation	Pregnancy	Reference
Hodgkin's Lymphoma	25	Unilateral ovarian biopsy	Orthotopic	Spontaneous, live birth	Donnez, 2004
Non-Hodgkin's Lymphoma	28	Unilateral ovarian biopsy (after 1 st course chemo)	Orthotopic (Both ovaries)	IVF, live birth	Meirow 2005; 2007
Hodgkin's Lymphoma	31	Unilateral ovarian biopsy (after 1 st course chemo)	Ortho and heterotopic	Spontaneous, miscarriage then livebirth	Demeestere 2007
Hodgkin's lymphoma	27	Whole ovary	Orthotopic	Livebirth male Week 37 B.Wt 2.6 Kg	Andersen et al 2008
Ewings Sarcoma	a 36	Whole ovary	Orthotopic	Livebirth Female Term B Wt 3.2 Kg	Andersen et al 2008

Technology or evidence led?

hen there is uncertainty about a new experimental procedure, it is important for it to be evaluated in IRB-approved clinical trials

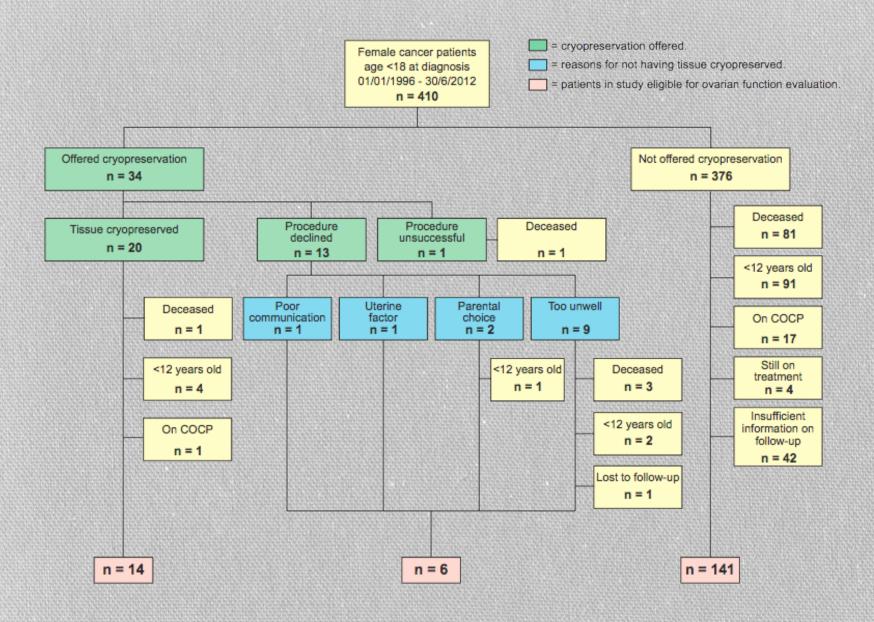
nlikely to be feasible or ethical to perform an RCT in a well characterized group of young women to test laparoscopic collection of ovarian cortex versus versus either dummy laparoscopy or no intervention

t is highly unlikely that IRBs would pass such a study, or that such a randomized study would be able to recruit sufficient patients

Table 2: Patient characteristics and ovarian function in those patients where ovarian tissue was cryopreserved

Patient No.	Diagnosis	Age at cryopreservation (years)	Method of ovarian tissue collection	Complications from procedure	Duration since cryopreservation (years)	Age at last assessment (years)	Current Ovarian Function
1	Hodgkin's Lymphoma ^o	14.9	Laparoscopic Cortical Strip	None	15.8	30.2	Not POI
2	Ewing's Sarcoma (pubic bone)	14.9	Laparoscopic Cortical Strip	None	16.6	25.6	POI (+1 child)
3	Sacral Ependymoma	11.3	Laparoscopic Cortical Strip	None	15.8	24.5	Not POI
4	Hodgkin's Lymphoma	13.7	Laparoscopic Cortical Strip	None	15.6	28.9	Not POI
5	Hodgkin's Lymphoma	11.0	Laparoscopic Cortical Strip	None	14.7		On COCP
6	Chronic Granulocytic Leukaemia	9.9	Laparoscopic Cortical Strip	None	12.2	21.7	Not POI
7	Rhabdomyosarcoma	5.3	Laparoscopic Cortical Strip	None	8.2	13.1	POI
8	Ewing's Sarcoma (pelvic)	9.8	Laparoscopic Cortical Strip	None	6.7	15.6	POI
9	Uterine Cervix Rhabdomyosarcoma*	16.4	Laparoscopic Cortical Strip	None	5.1	17.5	Not POI
10	Hodgkin's Lymphoma ⁰	14.0	Laparoscopic Cortical Strip	None	3.2	17.2	POI
11	Abdominal Embryonal Rhabdomyosarcoma	7.9	Laparoscopic Cortical Strip	None			Deceased
12	Ewing's Sarcoma	12.1	Laparoscopic Cortical Strip†	None	3.9	15.2	POI
13	Hodgkin's Lymphoma	12.7	Laparoscopic Cortical Strip	None	3.3	14.3	POI
14	Metastatic Medulloblastoma	8.1	Laparoscopic Cortical Strip	None	2.9		Not assessed
15	Hodgkin's Lymphoma	15.2	Laparoscopic Cortical Strip	None	1.9	16.9	Not POI
16	Alveolar Rhabdomyosarcoma	10.5	Laparoscopic Cortical Strip	None	1.4		Not assessed
17	Embryonal Rhabdomyosarcoma.	3.0	Oophorectomy	None	1.4		Not assessed
18	Ewing's Sarcoma	12.0	Laparoscopic Cortical Strip	None	1.4	13.5	Not POI
19	Undifferentiated Sarcoma	12.3	Laparoscopic Cortical Strip†	None	1.0	13.4	Not POI
20	Wilm's Tumour	1.2	Oophorectomy	None	0.6		Not assessed

All tissue collected before chemotherapy/radiotherapy administered (except patients 1 and 10). Ovarian function was not assessed in those patients who were under the age of 12 years at the time of the study.


+

[&]quot;tissue collected after relapse of disease 21 months post initial radiotherapy

⁰ tissue collected after relapse of disease 7 months post initial radiotherapy

^{*}diagnosis changed to Mullerian Adenosarcoma shortly after tissue cryopreserved

[†] metastatic deposits found on cortical strip

Offered Cryopreservation and Accepted

n = 14

Not POI n = 8

Age 21.9 yr (13.3 – 30.7)

POI n = 6

Age: 13.4 yr (11.2 – 15.3)

Interval: 1.7 yr (0.4 - 6.2)

Offered Cryopreservation - procedure declined

n = 6

Not POI n = 5

Age 16.7 yr (15.0 – 21.3)

POI

n = 1

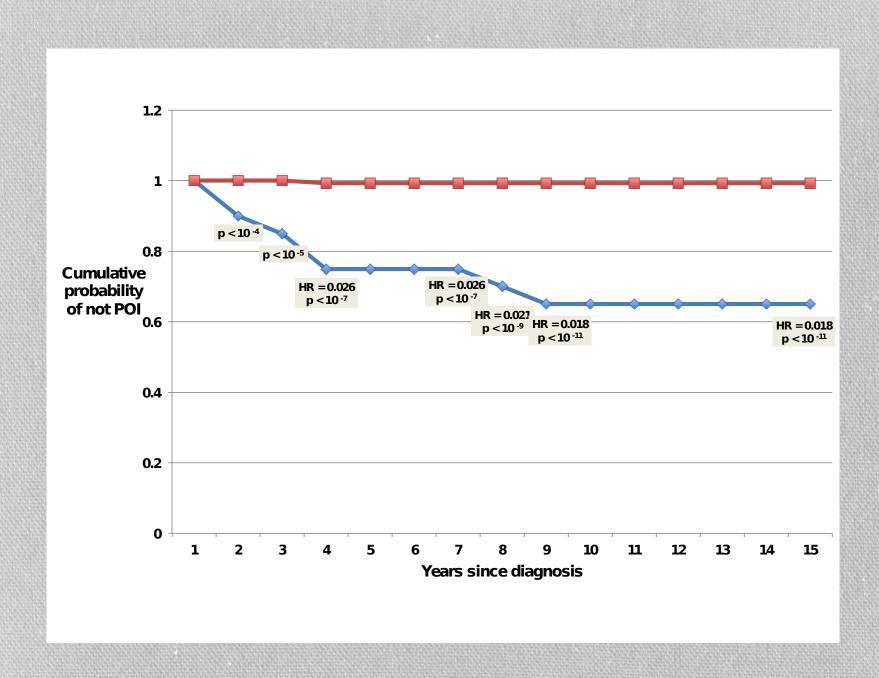
Age: 13.4 yr

Interval: 7.9 yr

Not offered Cryopreservation

n = 141

Not POI n = 140


Age 17.9 yr (12.3 – 32.2)

POI

n = 1

Age: 15.0 yr

Interval: 2.9 yr

Cryopreservation of ovarian cortical tissue – Edinburgh criteria

ection criteria (1995, modified 2000)

< 35 years

previous chemotherapy/radiotherapy if age >15 years

, non gonadotoxic chemotherapy if < 15 years

realistic chance of surviving five years

high risk of premature ovarian insufficiency

rmed consent (Parent and where possible Patient)

ative HIV and Hepatitis serology

existing children

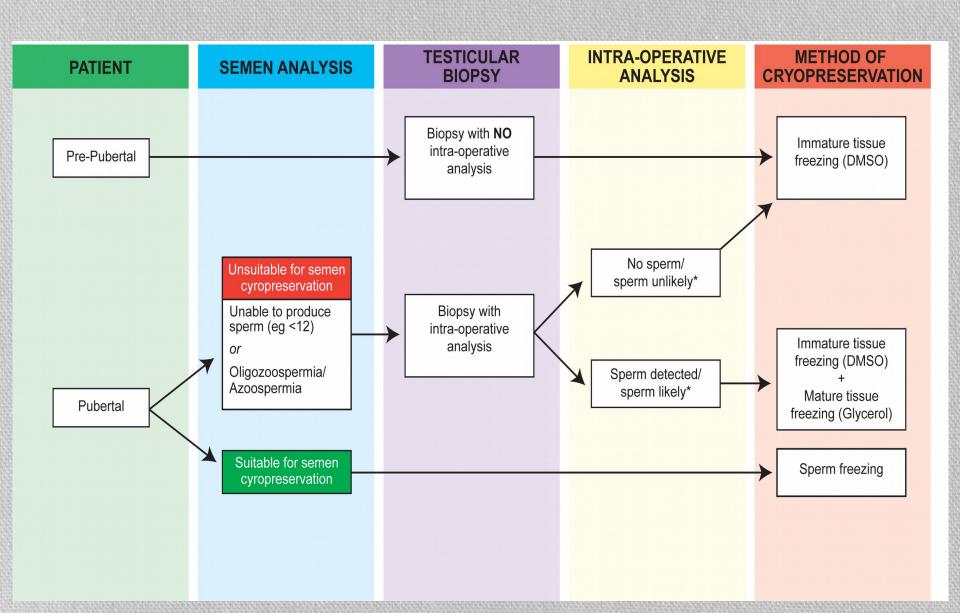
Sel

•Age

•No

·Mild

•A


•A

Info

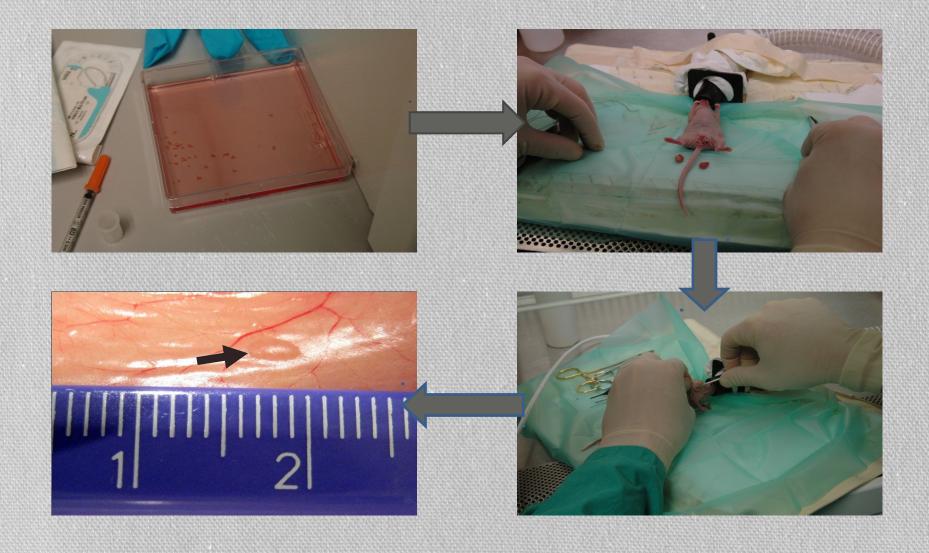
•Neg

•No

Algorithm for Tissue Cryopreservation

Cryopreservation of pre-pubertal testis tissue prior to cancer treatment

oys undergoing cancer treatment with >80% risk of infertility


iopsy to be taken with routine procedure

torage by Tissue Services according to 'mature' or 'immature' protocol

mall piece of tissue to be used for research

thical Approval Granted - September 2013

Human Testis Xenografting

